
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1989

Equipment replacement: an integration view
Bradley Charles Meyer
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Meyer, Bradley Charles, "Equipment replacement: an integration view " (1989). Retrospective Theses and Dissertations. 9221.
https://lib.dr.iastate.edu/rtd/9221

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F9221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9221?utm_source=lib.dr.iastate.edu%2Frtd%2F9221&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

The most advanced technology has been used to photo
graph and reproduce this manuscript from the microfilm 
master. UMI films the text directly from the original or 
copy submitted. Thus, some thesis and dissertation copies 
are in typewriter face, while others may be from any type 
of computer printer. 

The quality of this reproduction is dependent upon the 
quality of the copy submitted. Broken or indistinct print, 
colored or poor quality illustrations and photographs, 
print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a 
complete manuscript and there are missing pages, these 
will be noted. Also, if unauthorized copyright material 
had to be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drawings, charts) are re
produced by sectioning the original, beginning at the 
upper left-hand corner and continuing from left to right in 
equal sections with small overlaps. Each original is also 
photographed in one exposure and is included in reduced 
form at the back of the book. These are also available as 
one exposure on a standard 35mm slide or as a IT x 23" 
black and white photographic print for an additional 
charge. 

Photographs included in the original manuscript have 
been reproduced xerographically in this copy. Higher 
quality 6" x 9" black and white photographic prints are 
available for any photographs or illustrations appearing 
in this copy for an additional charge. Contact UMI directly 
to order 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Order Number 8920166 

Equipment replacement: An integration view 

Meyer, Bradley Charles, Ph.D. 

Iowa State University, 1989 

U M I  
300N.ZeebRd. 
Ann Aitor, MI 48106 



www.manaraa.com



www.manaraa.com

Equipment replacement: 

An integration view 

by 

Bradley Charles Meyer 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major: Industrial Engineering 

Approved: 

In Charge of Major Work 

or the Major Department 

For the Graduate College 

Iowa State University 
Ames, Iowa 

1989 

Copyright © Bradley Charles Meyer, 1989. All rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

TABLE OF CONTENTS 

1 INTRODUCTION 1 

2 REVIEW OF RELEVANT LITERATURE 4 

2.1 Weaknesses in Traditional Approaches to Justification 4 

2.1.1 Failure to adequately consider indirect costs 6 

2.1.2 Failure to adequately consider strategic factors 6 

2.1.3 Applying the wrong measure of merit 7 

2.1.4 Failure to consider the interaction of multiple investments 

within a firm [Leung and Tanchoco 19871, [Suresh and Mered

ith 1985] 7 

2.1.5 The use of a single number to measure the merit of an invest

ment [Graham 1970] 8 

2.2 Suggestions for Improvements 9 

2.2.1 Better use of the current methodology by a careful assessment 

of indirect and intangible costs 9 

2.2.2 Weighted multi-factor decision techniques 10 

2.2.3 Operations research methodology 10 

2.2.4 Models that encourage better cost estimation 11 



www.manaraa.com

ni 

2.2.5 Expert systems 11 

2.2.6 Revise accounting systems 12 

2.3 Replacement Theory 13 

2.3.1 Replacement and degradation functions 13 

2.3.2 Replacement and system interactions 16 

2.4 Summary 17 

3 RESEARCH OBJECTIVES 18 

4 UTILIZATION 21 

4.1 Introduction 21 

4.2 Modeling Equipment Cash Flows Incorporating Utilization 21 

4.3 Cases and Assumptions 23 

4.4 One Machine, Like-for-like Replacement, Constant Service Need ... 24 

4.5 More Than One Machine, Like-for-like Replacement, Constant Ser

vice Need 32 

4.6 One Machine, Non-like-for-like Replacement, and/or Varying Service 

Need 42 

4.7 More Than One Machine, Non-like-for-like Replacement, and/or Vary

ing Service Need 47 

5 INTEGRATION MODELING 57 

5.1 The Illustrative Model 58 

5.1.1 Notation 58 

5.1.2 Computation of PES AW 61 



www.manaraa.com

iv 

5.1.3 Revenues and raw material costs 61 

5.1.4 Processor related costs 62 

5.1.5 Quality characteristics 64 

5.1.6 Quantity relationships 65 

5.1.7 Market share function 66 

5.2 Comparing Two Alternatives 66 

5.2.1 Processor data 66 

5.2.2 Product data 67 

5.2.3 Market demand 69 

5.2.4 Process routings 69 

5.2.5 Raw material cost and quality 69 

5.2.6 Other data 71 

5.2.7 Results 71 

5.3 Determination of Likely Replacement Candidates 73 

5.4 Interactions of Replacement Alternatives 73 

5.5 Computational Burden of Combinations of Replacement Decisions 75 

6 SUMMARY 78 

6.1 Use-based Operating Costs 78 

6.2 System Interactions 79 

7 RECOMMENDATIONS FOR FURTHER STUDY 80 

8 ACKNOWLEDGEMENTS 82 

9 BIBLIOGRAPHY 84 



www.manaraa.com

V 

10 APPENDIX A: SENSITIVITY ANALYSIS OF ECONOMIC 

LIFE 89 

11 APPENDIX B; DATA OF CURRENT PROCESSORS 95 

12 APPENDIX C: HEURISTIC SEARCH TO FIND OPTIMUM 

REPLACEMENT SEQUENCE 98 



www.manaraa.com

vi 

LIST OF TABLES 

Table 4.1: Examples presented and assumptions made 24 

Table 4.2: ÀEC with 100% utilization 26 

Table 4.3; Normalized cost of machine use under varying levels of ma

chine utilization 26 

Table 4.4: Economic life, AEC, and cost per unit for machine 2 . . .  .  39 

Table 4.5: AEC as a function of machine utilization mix 40 

Table 4.6: First costs, capacity, and demand 44 

Table 4.7: PEC{C,START,USED) 46 

Table 4.8: Optimal sequence of equipment replacements . 46 

Table 4.9: Alternate demand forecast 47 

Table 4.10: Optimal sequence for faster rise in demand 47 

Table 4.11: Revised demand forecast 55 

Table 4.12: Results of the two dimensional dynamic programming example 56 

Table 5.1: The defender and challenger characteristics 68 

Table 5.2: Demand for final product in entire market 69 

Table 5.3: Operations and quantities in the production of the product 70 

Table 5.4: Raw material cost and quality data 71 



www.manaraa.com

vii 

Table 5.5: Sales, quality, material costs, and revenues 72 

Table 5.6: PEMRC of processors with and without replacement ... 72 

Table 5.7: Potential PES AW with ideal quality characteristics .... 73 

Table 5.8: Characteristics of a challenger of processor 7 74 

Table 5.9: PES AW with various combinations of replacement 74 



www.manaraa.com

viii 

LIST OF FIGURES 

Figure 1.1: Direct and indirect effects of manufacturing methodology on 

production profitability 2 

Figure 4.1: AEC as a function of iV 27 

Figure 4.2: Minimum AEC as a function of utilization 28 

Figure 4.3: Normalized cost per unit as a function of utilization 29 

Figure 4.4: A typical economic life curve 31 

Figure 4.5: Economic life curves for various values of utilization 33 

Figure 4.6: Occurrences of change in economic life when utilization drops 

from 100% to 75% 34 

Figure 4.7: Width of 5% and 10% AEC window as a function of how 

much the economic life changes when utilization drops from 

100% to 75% 35 

Figure 4.8: Occurrences of change in economic life when utilization drops 

from 100% to 50% 36 

Figure 4.9: Width of 5% and 10% AEC window as a function of how 

much the economic life changes when utilization drops from 

100% to 50% 37 



www.manaraa.com

ix 

Figure 4.10: The two dimensional dynamic programming stages 

Figure 4.11: A replacement sequence of a demoted machine 

Figure 4.12: Replacement patterns for a 6 year planning horizon when 

FA = 2 and fg = 4 

Figure 5.1: Parts explosion diagram of firm's sole product 

Figure 10.1 

Figure 10.2 

Figure 10.3 

Sensitivity analysis: sample 1 

Sensitivity analysis: sample 2 

Sensitivity analysis: sample 3 

Figure 12.1: A search-tree to find optimal replacements for 5 year plan

ning horizon 



www.manaraa.com

1 

1 INTRODUCTION 

In the last few years engineering economics has come under a great deal of 

criticism. The claim is that the commonly used models for making investment 

decisions are missing something. Many managers who are coming to the conclusion 

that they need to modernize their manufacturing methodologies to stay competitive 

turn to such models to aid their decision making process. But, unfortunately, 

when they make the estimates and plug the numbers into the economic replacement 

models, the answer too frequently comes up: "Don't invest". Being faced with a 

decision that their intuition tells them should be "yes", and an analysis technique 

that tells them "no", many conclude that the analysis technique must be flawed. 

This is not to say that cash How diagrams aren't valid, or that it is time to 

burn one's compound interest tables. Rather it seems that there are numerous 

factors relevant to replacement decisions that are commonly not considered when 

formulating economic analyses for replacement decisions. 

Common lists of the benefits of modern manufacturing technology include such 

things as lower inventory levels, increased quality, decreased throughput time (from 

recognition of market desire to time when company can provide a product to meet 

that desire), and more flexibility in product characteristics. Such benefits, it is 

claimed, are not easily translatable into economic terms and thus are not easily 
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manufacturing 
system 
characteristics 

^ utilization 

^ production costs 

\ 
demand profits 

price chargeable ^ revenues 

Figure 1.1: Direct and indirect effects of manufacturing methodology on produc-

incorporated into economic models. 

It is true that engineering economic approaches to equipment justification often 

consider only a subset of the economic impact of an expenditure. This is especially 

true when the replacement option is a machine which has different technological 

characteristics than the equipment currently in place. 

The manufacturing methodology embodied in the collection of machines, de

vices, and people that make up the manufacturing system affects profitability in 

three ways. First, there is the direct effect of methodology on the costs of pro

duction. Second, there is an indirect effect through the market place that affects 

demand that affects utilization of the system that affects costs. Finally, there is the 

effect of the production methodology on product price chargeable. 

Figure 1.1 depicts important relationships in modeling the economics of re

placement. It is common for economic replacement models to consider only the 

machines-cost relationship (arrow 1), This research work develops methodology to 

tion profitability 
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integrate into the analysis techniques more of these relationships. In particular the 

relationships between manufacturing methodology and market demand (arrow 2) 

and between utilization and production costs (arrow 4) are addressed. 

Chapter 2 provides a summary of the literature concerning the application of 

economic analysis techniques to justifying investments in modern manufacturing 

equipment and a summary of equipment replacement models. The third chapter 

outlines the objectives of the research. 

The relationship betv/een utilization and production costs and the resultant 

effect on replacement decisions is the subject of Chapter 4. Models are developed 

for a number of different modeling assumptions. The most general cases require the 

examination of a large number of possible equipment replacement sequences and 

dynamic programming algorithms are developed for their efficient solution. 

The relationship between the manufacturing methodology and market demand 

requires that the replacement decision be considered in a system context, in contrast 

to the common 'single machine' approach. The manufacturing methodology is the 

composite of all the entities that make up the manufacturing system. In the most 

theoretical sense this includes all machines, material handling systems, employees, 

managers, and even designers. This concept is developed in Chapter 5 through a 

sample integrated system economics replacement model. Numerous observations 

are made about the model and about the general problems that will be encountered 

as such modeling methodology is used. 

Chapter 6 summarizes the results and suggests topics of further research. 



www.manaraa.com

4 

2 REVIEW OF RELEVANT LITERATURE 

The literature review will be presented in two sections. First will be a discussion 

of traditional engineering economics modeling. This will focus on the shortcomings 

of traditional techniques to address the concerns of today's investment decisions. 

The second section will briefly detail the history of replacement analysis, including 

some innovative models that are being introduced today. 

2.1 Weaknesses in Traditional Approaches to Justification 

It is difficult to find an original way to begin a section discussing the shortcom

ings of traditional engineering economic analysis in justifying new manufacturing 

technology. So many articles have been written discussing this topic that most 

every kind of lead-in has been used at least once. At least five bibliographies on 

the subject have been published [Boothroyd 1984], [Canada 1986], [Fleisher 1982], 

[Hunter 1985], and [Sullivan 1984] and in 1986 the Institute of Industrial Engineers 

published a collection of significant articles [Meredith 1986]. 

First, it is important to identify what the "traditional" approach to justifying 

expenditures is. A sampling of articles reveals such descriptions as: 

"net present value, rate of return, payback, and other conventional eco

nomic analysis procedures" [Carrasco and Blank 1987, p. 211! 
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"discounted cash flow as well as accounting-based methodologies" [Canada 

1986, p. 137] 

"Engineering economy practitioners typically deal with tactical rather 

than strategic investment decisions" [Sullivan 1986, p.44] 

The standard procedure used by an engineer in evaluating a potential capital 

investment would be the following: 

1. Estimate the capital outlay required. 

2. Estimate the year by year cash flows associated with this investment. These 

may include maintenance and energy costs, revenues generated, costs for tool

ing, taxes, and so forth. 

3. Estimate the life of the investment and the salvage value at the end of its life. 

4. Using these values compute some economic measure of merit that describes 

the investment. This is commonly one of three values: payback period, net 

present value, or rate of return. 

5. Compare the investment with the status quo and with other potential invest

ments. Select the best alternative(s). 

The criticisms of this approach are many. They can be categorized into five 

major themes. (Interestingly enough, three of these are not a criticism of the 

method described above, but of the values, especially missing values, used in the 

computations.) 
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2.1.1 Failure to adequately consider indirect costs 

As the labor component of today's manufacturing processes becomes smaller, 

the percent of manufacturing costs attributable to indirect costs becomes larger. 

"Insufficient detail on overhead spending and lack of models to explain overhead 

spending are industry wide problems" [Hunter 1985, p. 57]. Examples of such 

costs likely to be reduced with modern manufacturing technology are given in the 

literature and include inventory, rework and scrap, training, setup, and floor space 

[Meyer 1986], [Kaplan 1984]. While most engineering economics texts emphasize 

the importance of including such factors, they are commonly overlooked in practice. 

2.1.2 Failure to adequately consider strategic factors 

Strategic factors are perhaps the major compelling reasons for investing in 

robotics, CAD/CAM, group technology, AGVS, ASRS, and CIM technologies. Mak

ing such investments improves the long term competitiveness of a firm. Some of 

the strategic benefits resulting from modernization mentioned in the literature in

clude shorter manufacturing through-put time, faster response to changing market 

demands, higher quality product, greater flexibility in manufacturing capabilities, 

improved worker morale, and the ability to deliver product at lower prices [Skinner 

1984], [Bernard 1986], [Meredith and Suresh 1986]. Often, it is claimed, economic 

analysts ignore these factors feeling that these are the concern of upper level man

agement. Yet, they are economic benefits, even if sometimes hard to quantify, and 

they should be included in economic analysis. Numerous authors make the point 

that estimates for these factors must be made since ignoring them is to assign them 

a value of zero, which is no more correct than an educated guess [Meyer 1986], 
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[Hunter 1985]. 

3.1.3 Applying the wrong measure of merit 

It is often stated in academic settings that the payback period criterion is 

a poor criterion to use for making capital budgeting decisions. Most engineering 

economists prefer present equivalent or rate of return criterion. Payback period 

owes its continued following to its ease of computation and intrinsic appeal to upper 

level managers who think in terms of turning over investment capital quickly. For 

some managers, their own personal rapid advancement within the company is more 

important than long term growth. This problem is described by Kaplan ! 19841. 

2.1.4 Failure to consider the interaction of multiple investments within 

a firm [Leung and Tanchoco 1987], [Suresh and Meredith 1985]. 

The methodology of the traditional economic analysis procedure described 

above typically looks at investments in isolation from other investments. When 

other investments are included, for example, in the capital rationing scenario, usu

ally the major interaction considered is the fact that the total investment capital is 

limited. 

As the movement is made towards computer integrated manufacturing it is 

more difficult to examine any investment without considering the impact of that in

vestment on the entire manufacturing environment. As one author stated, "though 

manufacturing is infinitely complex in all of its fine details, no single part can be 

treated in isolation.... Our own experience and the experience of others argues that 

a fractionalized approach just will not work!" [Lardner 1986, p. 73). 
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2.1.5 The use of a single number to measure the merit of an investment 

[Graham 1970] 

The criticisms against this aspect of economic analysis focus on two aspects, in

tangible or nonmonetized factors and risk considerations. Since some of the strategy 

factors mentioned above and other factors (reputation for quality products for ex

ample) are hard to quantify, some authors recommend that the analysis leave these 

as nonmonetized for the decision maker to consider. The analyst provides these to 

management with simple rankings or descriptions. One author recommends the use 

of a structured project methodology in which such factors can be systematically 

evaluated [Bernard 1986]. 

A single value of a measure of merit conveys a limited amount of information 

about the economic ramifications of the investment. For example, if a manager is 

told that the prospective present worth of an investment is 820,000, the manager 

does not know such things as: "In the worst case, how much could we lose?" or 

"How much more than this amount Is possible if we are lucky?" or "How many 

years will it take for us to realize this return on the investment?" 

Risk analysis techniques have been included in engineering economic analysis 

for many years and are described in most textbooks. Smith [1987], and Riggs 

and West il986| are two examples. There are techniques designed to avoid the 

condensation of the data into a single number and instead convey a range of values 

and their corresponding probabilities. Rather than choosing between the best of two 

simple values, alternatives are compared using statistical concepts such as stochastic 

dominance ! Whit more and Findlay 1978). Although the mathematical tools for 

analyzing risk are available, often times such considerations are not included in 
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economic analyses. 

In summing up these criticisms of traditional methods of engineering economic 

analysis, it could be said that the literature points out a need in economic analysis 

to consider all the cost factors involved, to consider the systems effect of investment 

opportunities, and to present the data to the decision makers in a way that conveys 

as much information as possible. 

2.2 Suggestions for Improvements 

The literature also contains many prescriptions for improving the ability of 

economic analysis to be used in justifying modern technologies. Some of these 

techniques are small improvements to the current procedures while others are radical 

revisions of current practices. These will be briefly discussed starting with the 

smaller, incremental changes and moving to the more extensive revisions of analysis 

methodology. The interested reader is referred to Sullivan [1986] and Meredith and 

Suresh [1986] for other categorizations of techniques. 

2.2.1 Better use of the current methodology by a careful assessment of 

indirect and intangible costs 

Some articles propounding this as a solution give concrete examples of how to 

quantify commonly overlooked costs. Quantitative treatments include discussions of 

operating inferiority costs [Lowe 19871, robotics costs [Meyer 19861 and FMS costs 

[Klahorst 1983]. Articles that describe such costs qualitatively include [Kaplan 

1984], [Blank 1985], [Phillips 1983], and [Primrose and Leonard 1986]. Meyer [1986, 

p. 120], states that, "management seems willing to relax the financial justification 
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requirements for that 'first installation'. However, after the honeymoon, the realities 

of financially justifying the future systems require us to put some 'hard numbers' 

on all those wonderful benefits." This willingness to relax the requirements for first 

installations can be a vital opportunity since the benefits of the first installation 

can be tracked after the fact providing a basis for estimates of benefits of future 

investments. 

2.2.2 Weighted multi-factor decision techniques 

Factor analysis techniques have been used for many years. These are techniques 

where intangible values are assessed by assigning a numeric value that quantifies 

the benefit and the importance of that benefit to the decision maker. The interested 

reader is referred to Sullivan [1984], Frazelle [1985], Morris [1977], and Riggs and 

West [1986]. 

2.2.3 Operations research methodology 

To handle the complex interactions of investment decisions in today's integrated 

manufacturing setting, many of the techniques of operations research can be used. 

A dynamic programming approach to machine replacement has been developed for 

considering the optimal pattern of replacements over a given time horizon [Oakford, 

Lohmann, and Salazar 1984]. While this model did not directly address multiple 

concurrent investments, it could be extended to include them. Linear programming 

is also suggested in selecting optimal machine investments [Srinivasan and Kim 

1987]. A model that includes risk considerations within the framework of replacing 

machines in a flexible manufacturing cell is described by Leung and Tanchoco [1987]. 
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Numerous authors suggest that simulation is a feasible way to access the effects 

of the complex interactions of integrated manufacturing [Carrasco and Blank 1987], 

[Blank 1985]. Blank, [1985, p. 237] comments that simulation languages will have 

to advance to produce results and allow simulated decisions "on a cost basis rather 

than bases such as queue length, waiting time, and priorities that may not use 

cost-sensitive weighting functions." 

2.2.4 Models that encourage better cost estimation 

Two articles recommend systems that involve iterative approaches to the invest

ment decision making process. The cost estimates used in the approaches improve 

with each iteration. In one model, a cost tracking information system is set up 

within the plant. As the investment alternative moves from the planning stages to 

the implementation stages costs are captured and the cost/benefit criterion can be 

refined to reflect reality more closely [Carrasco and Blank 1987]. In another model, 

sensitivity analysis is performed to determine which factors will have the most im

pact on the total value of the investment. As these factors are revealed, more energy 

can go into estimating their actual worth [Miltenburg and Krinsky 1987;. 

2.2.5 Expert systems 

Expert system applications in engineering economics consist of two types. Most 

useful to researchers are those well-documented, research-oriented models. Two 

such examples are [LeClaire and Sullivan 1985] and lO'Leary 1987]. The first of 

these two, entitled XVENTURE, was created using an expert system shell. The 

expert whose knowledge was captured was William Sullivan, a professor of Industrial 
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Engineering at the University of Tennessee. The system was a small one, consisting 

of six questions with anywhere from two to four possible responses for each question. 

This made a total of 648 combinations of responses possible. A most useful feature 

about XVENTURE is that the knowledge on which it operates focuses on the 

intangible factors in the investment decision. One question asked is whether the 

present equivalent worth of the investment opportunity is greater or less than 2!ero. 

The remaining five questions ask such things as what is the investment's impact on 

capacity and quality, and how well does the technical plan involving this investment 

match the corporation's overall business strategy. 

The other type of expert system in economic analysis is the commercial type. 

Of course, the knowledge representation scheme used in this kind of system and the 

reasoning techniques are not available for public examination. 

2.2.6 Revise accounting systems 

Perhaps the root of the problem of computing indirect costs is the continued 

use of cost accounting systems that were designed years ago when direct labor and 

direct materials were the major cost components in manufacturing. Often times 

overhead costs are allocated to products by merely adding a percentage to the di

rect labor cost. Since these accounting methodologies are used within the plant to 

determine manufacturing cost, it might seem reasonable that cost estimates pre

pared for capital expenditure alternatives use the same methodology. However, this 

will almost always underestimate the benefits of an investment in modern man

ufacturing techniques as they are well known for their ability to reduce indirect 

expenses. To solve this dilemma it is recommended by some not merely to compute 
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cost studies differently, but to ultimately do a major overhaul of accounting systems 

used in manufacturing [Kaplan 1984]. 

This ends the review of current perspectives and ideas concerning the use of 

engineering economic analysis in justifying new manufacturing technology. The crit

icisms of traditional methods have been summarized and recommended alterations 

or replacements for those models have been described. 

2.3 Replacement Theory 

The above section described the state of economic analysis in general. Although 

most of the discussion focused around the problem of justifying new equipment-

which implies replacement-little was said about the topic of replacement theory 

which has developed within the realms of engineering economy. A brief history of 

replacement theory will now be given with special attention to two issues. The first 

of these is the modeling of equipment degradation-the main reason for replacement. 

The second is the modeling of interactions of machines within a production system. 

This is a topic which has only recently been addressed. 

2.3.1 Replacement and degradation functions 

The major issue of economic analysis for equipment replacement is the decline 

in value of equipment over time. Indeed, the articles by Taylor [1923] and Hotelling 

! 19251, that are often spoken of as being the starting point of replacement the

ory were actually articles on valuation-theories of how to determine depreciation. 

In these two articles, the decline in value of a machine stemmed from two time-

dependent functions: that of operating costs, which increased with age, and that 
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of salvage value, which decreased with age or perhaps remained constant. Taylor 

did not discuss these functions in depth, but Hotelling noted that operating costs 

in reality are dependent on both age and use [1925, p. 352]. However, most of his 

theory is developed using the assumption of constant utilization of the equipment, 

which makes operating costs practically a function of time only. 

Preinreich [1940] considered the question of optimal replacement timing, divorc

ing himself from the depreciation viewpoint of Taylor and Hotelling. He modified 

their models and set the replacement decision in its rightful context as one deci

sion in a sequential chain of decisions. His degradation functions were again time 

dependent only, based on an implicit assumption of constant utilization over time. 

A significant advance in the modeling of degradation was made by Terborgh 

[1949], [1958] who elaborated the distinction between deterioration and obsoles

cence. Deterioration, he said, it a characteristic of the machine itself and the aging 

process. Obsolescence is another phenomenon that could encourage replacement, 

but appears not as a characteristic of a machine Itself, but as a characteristic of the 

relative capabilities of new machines, called challengers, to those of the currently 

owned machine, called the defender. 

Terborgh discussed the fact that operating costs increase as a function of use 

as well as of age. His book includes graphs showing cost as a function of use 

for numerous types of equipment on which data were available il949, pp. 70-71;. 

While Terborgh realized that deterioration was a function of use, he did not feel that 

adequate data existed to make use of this observation, thus his well known MAPI 

method treated operating costs as increasing linearly as a function of time only. 

Salvage value was assumed to be negligible. Obsolescence was modeled through the 
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existence of competing machines whose first year operating costs decreased with the 

year of their availability. 

Since Terborgh, models in the literature have incorporated a variety of degrada

tion functions. For example, Eilon, King, and Hutchinson [1966] employ monoton-

ically decreasing salvage values, Gpinyer [1973] uses negative exponential functions 

for the decline in first year operating costs of challengers, and Tanchoco and Le

ung il987j use monotonically increasing operating cost coefficients. In all cases, the 

functions are time dependent, not use dependent. 

When the degradation functions are modeled with the least amount of restric

tions, the optimum replacement timing problem requires the comparison of a large 

number of possible decision sequences. Dynamic programming has emerged as the 

dominant technique to limit the computational burden of finding an optimal re

placement strategy [Meyer 19811. Bellman [1955] presented the first application of 

dynamic programming to replacement. Dreyfus [1957] expanded this two years later. 

Since then, numerous authors have presented dynamic programming formulations 

in replacement theory. Among them are Oakford, Lohmann, and Salazar[1984|, 

Hastings [1973], and Leung and Tanchoco [1987]. 

The contribution of replacement analysis to production economics is its recog

nition of the phenomenon of the change in relative capabilities of equipment over 

time. To date this degradation has been modeled strictly as a function of age. While 

it is commonly acknowledged that the deterioration of equipment is also dependent 

on its utilization, this has not yet been addressed explicitly in replacement models. 



www.manaraa.com

16 

2.3.2 Replacement and system interactions 

While degradation is well known in replacement theory, integration is not. Few 

replacement models incorporate the fact that equipment items operate as compo

nents of manufacturing systems. The characteristics of each equipment item affect 

the costs and benefits of the other machines in the system. The replacement of 

a machine is not an isolatable event, thus replacement decisions should be based 

on consequences to the overall system. This is especially true in light of today's 

increasingly integrated manufacturing environment. Blank il985j details the need 

of economic analysis models to incorporate this "integration view". 

While the bulk of replacement analysis does not regard the issue of machine 

interactions, as early as 1968, replacement models including such facets have ap

peared in the literature [Hansmann 1968], [Ray 1971]. Earlier than this, Smith 

[1961] comments on multi-machine issues but leaves their development to the reader. 

A promising approach has recently been described in an article by Leung and Tan-

choco !l987]. Their model includes the effects of replacement decisions on such 

system-oriented characteristics as the assignment of parts to machines, material 

handling costs, and utilization of manufacturing resources. Their model as pre

sented, however, was simplified to include only a single time period which "rules 

out the effects of such time-dependent factors as obsolescence, deterioration, and 

future revenue/parts changes" 11987, p. 97]. They indicate that a more advanced 

model including such factors is soon to be published. 
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2.4 Summary 

The survey of literature on economic analysis methods in general showed that 

to adequately address the needs of decision makers in today's manufacturing en

vironment models must (1) be thorough in the modeling of tangible cash flows 

affected by the decision including those cash flows that result from the interactions 

of the components in the system, (2) seek to incorporate strategic, intangible factors 

along with the tangible cash flow values, and (3) provide to management more than 

a simple, single-valued measure to describe each alternative. 

The survey of replacement models showed that while there is admission that 

equipment costs and benefits are dependent on the utilization of the equipment, 

models are generally formulated without explicitly incorporating it. Also, replace

ment models generally treat machines in isolation of the manufacturing system of 

which they are a part. 
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3 RESEARCH OBJECTIVES 

The shortcoming of economic analysis models, in the context of equipment re

placement in an environment characterized by rapid technological progress, is that 

the models allow too much to be left out. The concept of discounted cash flows 

is sound, as long as you define "cash flows" broadly enough to include all relevant 

financial impacts, direct or indirect. The models provide all the framework neces

sary to correctly evaluate replacement decisions, only if the analyst is conscientious 

enough to include all factors. 

The objective in this research is to devise a more complete approach to the 

modeling of replacement economics that brings to the surface many of the factors 

that are usually considered to be "intangible" or "indirect." This forces the ana

lyst to grapple with these factors and does not allow them to be ignored. Such 

intangibles and indirect costs can be incorporated at the modeling stage in a way 

that makes their quantification explicit and computable; that is, able to be found 

from shop floor data, through market research, from historical data, or some other 

"tangible" means. 

The approach taken is an integrated approach. The capital costs, operating 

costs, and revenues pertaining to an entire manufacturing system made up of ma

chines, humans, computers, and material handling systems, are combined in a model 
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to analyze the economic effects of possible replacement scenarios. 

There are two key concepts in the modeling approach. The first of these is 

utilization based operating costs and operating cost degradation functions. When 

technological change is a factor in replacement, there are two reasons why utilization 

based costs should be used. A change in an organization's, manufacturing methods 

will be likely to effect the reputation of the product- and firm through changes in 

quality, timely delivery, and so forth. Reputation, of course, is a major factor in 

determining demand for the product and the price that can be charged. Capital 

and operating costs are quite sensitive to the demand especially when expensive 

machinery is used. Capital costs are recovered through products produced by the 

equipment. Operating costs, direct and indirect, are dependent on the number of 

items produced. 

The second key concept of this approach is the system orientation. Replace

ment decisions are evaluated with respect to their impact on the total manufacturing 

environment. The system approach as presented here calls for the detailed descrip

tion of the interactions of the various components of the manufacturing system. By 

including machines, line workers, managers, material handling systems, and inven

tory storage areas, the tracking of indirect costs becomes an explicit rather than 

implicit task. Again, this prevents the analyst from ignoring these factors. 

The strategy taken is to first extend a typical replacement model by adding the 

relationships between demand, utilization, and production costs. Thus, in Chapter 

4, the concept of utilization based costs and degradation functions are developed 

within the context of single item equipment replacement models. The effects of the 

production characteristics on the demand are not addressed in this section. Rather 



www.manaraa.com

20 

demand is treated as independent of the equipment. 

In the fifth chapter, the concepts developed in Chapter 4 are expanded to 

a manufacturing system model that incorporates system component interactions. 

Also this section treats demand as based on the production system characteristics. 

To simplify the model, the only characteristic of the system that affects demand 

is "product quality". The modeling approach could be extended to cover other 

characteristics such as throughput time. 

The models presented are accompanied by numerical examples of their use. In 

these examples, numerous functions expressing the relationships described above are 

used. While these functions are chosen as reasonably likely relationships, there is 

no discussion of how the functions are derived. It is assunied that such relationships 

can be found from historical data or estimated from market research or equipment 

specification documentation. The issue of formulating such functions could easily 

be the topic of an entire research program. The objective of this research is to 

explore the integration of such relationships, given that they can be found. 
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4 UTILIZATION 

4.1 Introduction 

As stated in the literature review, economic models of replacement rarely in

clude utilization explicitly. This chapter develops methodology for modeling uti

lization and for solving replacement questions in a context where only one machine 

is considered, or two machines performing the same process. 

4.2 Modeling Equipment Cash Flows Incorporating Utilization 

The typical cash flow items in replacement analysis are first cost, operating 

expenses, salvage value, and in some cases, revenues. The last three of these can 

be modeled as functions of utilization. The cumulative utilization will be denoted 

by cu. Usually this will be expressed as cu(N} meaning the cumulative utilization 

at the end of year N. Cumulative utilization can be in terms of cumulative years, 

as will be the case in this chapter, or as cumulative hours, as will be the case in 

Chapter 5. When utilization is a constant, U, each year (U is between 0 and 1), 

then equation 4.1 holds. 

cu(IV) = NU (4.1) 

Salvage value is a function of age and utilization. V ( N ,  c u { N ) )  is the salvage 
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value of a machine that has been used for N years accumulating cu{N) years of uti

lization. It would be reasonable that the salvage value be monotonically decreasing 

as N and cu grow larger. The value could very well become negative. 

The operating expenses are modeled as a combination of two cost functions. 

First are those costs which are dependent only on time, such as depreciation tax 

effects, insurance, and property taxes. These will be called the age related operating 

costs, or aroc{N). This function is defined as the cost per year to operate the 

equipment in the iVth year  of  operat ion.  The use related operat ing costs ,  uroc{cu),  

are those costs that are dependent on the amount of utilization, such as energy 

costs, maintenance, and repair. Let uroc{cu) equal the cost per unit time to use 

the equipment when it has been used for a cumulative number of cu years. 

For use with discrete cash flow analysis another function can be defined that 

cumulates the use related operating costs for a year N. Let UROC{N) be the use 

related operating costs incurred in year N. This is the integral of uroc{cu) from 

the value of cu at the beginning of year N to the value of cu at the end of year N. 

This is shown in equation 4.2. 

cu(N) 

U ROC{N) = J uroc{cu)dcu (4.2) 
cu(N — l )  

It is generally true that the operating costs of a machine increase with time and with 

cumulative use. For most types of equipment this is true. For machines that make 

use of computer programs an opposite result might occur. Computer programs 

often have the characteristic of improving with age, because bugs will be found 

and corrected and the maintenance costs for the program will decrease. However, 

if the program is being used in a changing environment and must be updated to 
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reflect changes in its use, then the changes will introduce new bugs and the cost 

decline may not be seen. We can summarize by saying that in general aroc and 

UROC are monotonically increasing functions of N and cu. For certain categories 

of equipment such as computer equipment, however UROC might actually decrease 

with increasing cumulative utilization. 

Operating revenues are a function of utilization if the assumption is made that 

the more product produced, the more product sold. However, there is a difficulty 

in assigning revenue to any one machine in a manufacturing system where a part 

is produced by means of operations on many different machines. In this chapter, 

either fixed revenue will be assumed, or costs will be figured on a per part basis. 

The functions V, oroc, and UROC are projections of the future. They could 

be calculated from extrapolations of historical data or from operating characteristic 

data of a new machine. A useful area of research not addressed in this treatise 

would be to determine how well these functions can be predicted and from what 

kinds of data. 

Let B represent the first cost of a machine and i  the interest rate. Given this 

and the variables defined above, the annual equivalent costs for an equipment item 

are given by equation 4.3. 

AEC = (b -  i; [aroc(n) 4- UROC{n))(PIF)C\ (.4/P)V - y(;V,cu(jV))(.4/% 

(4.3) 

4.3 Cases and Assumptions 

To demonstrate some of the effects that utilization has on replacement decisions 

four example analyses will be presented. The methodology for solving a replacement 
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Table 4.1: Examples presented and assumptions made 

constant service varying service 

j machine 

like-for-like 
replacement 

example 1 
(4J0 T 

j machine different 
replacement 

example 3 
(4.6) 

i 

1 more than 

j 
j 1 machine 

like-for-like 
replacement 

! 

example 2 j 
(4.5) i T 

i 

1 more than 

j 
j 1 machine different 

replacement 

1 

<— ! example 4 
' (4.7) 

problem depends on the assumptions of the problem definition. In the examples 

that follow, the questions that differentiate between methods are: 

1. How many machines are required to supply the desired demand? (1 or more 

• than one) 

2. Do replacement machines have equal cost characteristics? 

3. Is the demand for the services of the machine constant or varying over time. 

Table 4.1 shows the combinations of assumptions that are relevant to each 

example. 

4.4 One Machine, Like-for-like Replacement, Constant Service Need 

With the given assumptions, the replacement problem becomes one of deter

mining the optimal number of years to keep a machine before replacing it with an 
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identical one. This is found by simply finding the n value that minimizes the AEC 

value as given in equation 4.3. An example problem is shown below. 

B = 30,000 

aroc{n) = 300(% - 1) 

UROC{n) = 1200cu(n) 

cu{n) = nU 

i = .20 

In this example case, V is a monotonically decreasing function. UROC and 

aroc are monotonically increasing. The annual equivalent cost of owning this item 

for a life of N years is given below. 

AEC{N) = 30,000(.4/P)i^ + (300 + 12006^) {A/G)'^  

For U = 1 (100% utilization of the equipment) the AEC values for the first 10 

values of .V are as shown in Table 4.2. From these values it can be seen that the 

economic life is 7 years with an AEC of $11,577. This is shown graphically in Figure 

4.1. 

Varying the utilization from 100% to 50% produces Table 4.3 showing the 

economic life, the AEC and the normalized cost per "unit" of production (using 

100% as 1). Figures 4.2 and 4.3 show graphically the minimum AEC and the 

normalized cost per unit as a function of the utilization rate. 

Two observations can be made from this example. First, as expected, the 

annual equivalent costs are lower as utilization drops. Second, the cost of the 
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Table 4.2: AEC with 100% utilization 

N AEC 
1 15167 
2 13742 
3 12800 
4 12200 
5 11841 
6 11651 
7 11577 
8 11583 
9 11643 

10 11736 
11 11850 
12 11975 

Table 4.3: Normalized cost of machine use 
under varying levels of machine 
utilization 

economic normalized 
U life AEC cost/unit 

100% 7 11577 1.000 
95% 8 11421 1.038 
90% 8 11257 1.080 
85% 8 11093 1.127 
80% 8 10926 1.180 
75% 9 10757 1.239 
70% 9 10576 1.305 
65% 9 10393 1.381 
60% 9 10208 1.470 
55% 10 10012 1.573 
50% 10 9814 1.695 
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machine, in terms of its per unit impact on the cost of the product produced grows 

significantly as utilization drops. 

Since this is just one sample problem which does not necessarily lead to gener

alizations, an informal sensitivity, is presented to show for various types of salvage 

value and operating expense functions what effect changes in utilization have on 

economic life and minimum AEC. Figure 4.4 shows a typical economic life curve. 

The costs are composed of two major contributors, capital cost and operating cost. 

The economic life curve can be divided into three sections. The first section mani

fests mainly the capital cost as the new equipment is quickly losing value. Following 

this, section two is fairly flat as the capital cost and operating cost gradients almost 

cancel each other out. Finally, in the third section of the curve, the operating costs 

become large enough proportionally so that they begin to dominate the curve. 

In Figure 4.5 is shown a set of economic life curves for various values of uti

lization. There is a slow shifting of the economic life as utilization changes. In the 

first few years the salvage value, and thus utilization, has a significant effect on the 

first part of the curve. The use related operating costs can influence the latter part 

of the curve. 

When utilization is less than 100% the decline in salvage value is slower and the 

gradient costs increase more slowly. Thus the economic life curves become flatter 

as the utilization goes down. 

The sensitivity analysis considers a number of likely functional relationships for 

V and UROC with utilization. In all, the 243 possible combinations of 3 salvage 

value relationships, 9 aroc functions and 9 UROC functions are examined at 3 uti

lization levels. In the results the economic life length is only sensitive to utilization 
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in the cases where the economic life curve has a long flat region. (That is, in cases 

where the exact determination of economic life is not critical.) In all of the cases 

where the economic life changes more than one year as utilization varies from 100% 

to 50%, the optimum AEC value is in a range that does not vary more than 5% in a 

spread of 17 or more years. The sensitivity of economic life to changes in utilization 

is shown in Figures 4.6 through 4.9. Figures 4.6 and 4.8 summarize for the 243 

cases how many years different the economic life is when utilization drops to 75% 

and 50% respectively. Figure 4.7 and 4.9 show for those same values of economic 

life shift, how wide the 5% and 10% windows are. The "windows" include all years 

of life for which the AEC value is less than or equal to 5% or 10% more than the 

minimum. 

While economic life may not be very sensitive to changing levels of utilization, 

the cost per part of product produced is, as expected, quite sensitive to changing 

utilization levels. Figure 4.3 previously discussed is representative of the relationship 

between cost per part and utilization. 

The functions used in the sensitivity analysis along with sample results are 

shown in Appendix A. 

4.5 More Than One Machine, Like-for-like Replacement, Constant 

Service Need 

Consider a case where two machines are required to meet the demand for a 

single product. The two machines have different capacities and different cost pa

rameters associated with their use. It will be assumed that the like-for-like replace

ment assumption applies and that the demand for the product will not change over 
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time. With the demand for product produced being more than either machine can 

produce alone, but less than both can produce when both operating at 100%, how 

should the load be distributed between the two machines to minimize the machine 

costs? 

Machine one has identical cost characteristics to the machine in the example 

above. The second machine has 50% more capacity, and has costs as described 

below: 

Bi = 50,000 

~  ( l -f)fcu(n) 

aroc2{n) = 400(n - 1) 

U ROC^in) = 1900cti(n) 

From these data, the economic life, AEC, and normalized cost per unit are com

puted for machine 2. (See Table 4.4.) In this table, the normalized cost per unit is 

normalized with respect to machine one, taking into account the fact that machine 

two can produce 50% more than machine one at 100% utilization. 

Let 

Ck = the capacity of the kth.  machine 

Uk = the utilization level of the fcth machine 

D = the demand of product 

With two machines the following is true, 

C,Ui + C2U2 = D (4.4) 

For the two machine example, let C\ = 1, C2 = 1.5. If the demand, D is 2, then 

various combinations of loading levels of the two machines can produce the required 
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Table 4.4: Economic life, AEC, and cost per unit for machine 2 

economic normalized 
u life AEC cost/unit 

100% 8 18790 1.082 
95% 8 18533 1.123 
90% 8 18273 1.169 
85% 9 18000 1.219 
80% 9 17718 1.275 
75% 9 17443 1.339 
70% 10 17144 1.410 
65% 10 16837 1.492 
60% 10 16526 1.586 
55% 11 16208 1.697 
50% 11 15877 1.829 

quantity. Table 4.5 above shows the AEC for each machine and for both together. 

Looking at the AEC values for this example, the cost is minimized by loading one 

machine at 100%, in this case, the best machine to fully utilize is machine 1. 

With a rather logical assumption on the characteristics of minimum AEC as 

a function of U it can be shown that the optimal strategy is to load the machine 

with the lowest normalized cost per part to the 100% level. 

Let the variables Ci,  Cg, and D be defined as before. Let f{u)  be the minimum 

annual equivalent cost of machine 1 when operated at utilization level u. Let the 

function g{u) be the minimum annual equivalent cost of machine 2 when machine 

1 is operated at utilization level u. Assume that f{u) is a monotonically increas

ing concave function in the region of utilization possible (given the capacities and 

demand). Assume that g{u) is a monotonically decreasing concave function. (Note 

that g{u) represents the costs of machine 2 as a function of machine 1 utilization. 

Since machine 2 utilization is inversely proportional to machine 1 utilization, the 
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Table 4.5: AEC as a function of machine utilization mix 

TOTAL 
U2 AECi AEC, AEC 

100% 67% 11577 16940 28517 
95% 70% 11421 17144 28565 
90% 73% 11257 17337 28594 
85% 77% 11093 17528 28621 
80% 80% 10926 17718 28644 
75% 83% 10757 17904 28661 
70% 87% 10576 18094 28670 
65% 90% 10393 18273 28666 
60% 93% 10208 18446 28654 
55% 97% 10012 18619 28631 
50% 100% 9814 18790 28604 

costs of machine 2 are monotonically increasing as its own utilization goes up.) 

To show that the minimum cost occurs where one of the machines is fully 

utilized, the initial assumption will be made that there does exist a utilization level, 

u\ with total AEC less than that where either of the machines is operated at 100%. 

It will then be shown that this assumption leads to a contradiction. 

Let L equal the lowest utilization possible on machine 1. This occurs when 

machine 2 is fully utilized. From equation 4.4 we find that: 

P X Cz L = 

By assumption: 

f { u ' )  ^ g { u ' )  <  f { l ) ^ g { l )  

(4.5) 

(4.6) 

(4.7) 

where 

L  < u '  < 1  (4.8) 
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Since the / function is monotonically increasing and is concave (the derivative is 

always increasing), then: 

/ (" ' )-  fW ,  / ( I ) - / K )  , , , ,  
u ' -  L 1 - u' ^ ' 

Similarly, since g is monotonically decreasing and concave, 

g{L)-g{u')  g{u')-g{l)  
u ' - L  1 - u '  ^  

Equation 4.6 can be rewritten as, 

f { u ' ) - f { L ) < g i L ) - g { u ' )  (4.11) 

Equation 4.7 can be rewritten as, 

/(I) -/K) > fC^')-^(1) (4.12) 

From 4.9 and 4.11 it can be found that: 

,(l)-sM , /(I)-/("') 
u ' - L  ^  1 - u '  

From 4.10 and 4.12 it can be found that: 

g { L ) - g { u ' )  f { l ) - f { u ' )  
u ' - L  1-u' ^ ^ 

Looking at equation 4.13 and equation 4.14 reveals a contradiction, the left hand 

quantity cannot be both less than and greater than the right hand quantity. Thus, 

the original assumption leads to a contradictory result and there can be no u' value 

that provides a lower total minimum AEC. (Note if we define the / and g functions 

to be strictly nondecreasing and strictly nonincreasing respectively, then equation 
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4.13 and equation 4,14 will not be strict inequalities and there can be a u' with a 

value the same as the endpoint, but not less than it.) 

Before proceeding to the third example notice the sensitivity (or lack thereof) 

of total AEC to utilization mix in Table 4.5. With the values used in this example, 

the AEC value only ranges from .28,517 to 28,670, a change of only one half of a 

percent! This follows from the sensitivity study of AEC as a function of utilization 

done earlier for a single machine. If demand is fixed, and there are a number of 

machines which are able to perform a given operation, the exact loading of the 

machines may not be too critical from a pure cost standpoint. Other considerations 

such as scheduling availability, setup costs, and quality may be more significant 

factors  than optimum AEC. 

4.6 One Machine, Non-like-for-like Replacement, and/or Varying 

Service Need 

If the like-for-like replacement assumption is removed or if the service require

ment is  varying,  the approach of f inding the n value that  yields the minimum AEC 

is inadequate. Instead, any possible sequence of replacements within a fixed time 

interval must be evaluated. The work of this task can be greatly reduced using a 

dynamic programming technique. 

Let the B, V, aroc,  and UROC functions defined above be subscripted to 

represent different machines available in different years. Thus, 

B{C,Y) — first cost of challenger C available in year Y. 

V{C,Y,  N,cu{N))  = the salvage value of of challenger C  available in year Y  if 
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purchased and used for N years with cu{N) cumulative years of use. 

aroc{C,Y,  N) = the age related operating costs incurred in the iVth year of use of 

challenger C acquired in year  Y. 

UROC{C, Y,  N) = the use related operating costs incurred in the iVth year of use 

of challenger C acquired in year Y if the cumulative utilization at the end of 

year  N is  cu{N).  

Using these modified definitions the present equivalent costs to use a machine can 

be expressed similarly to equation 4.4. 

PEC{C,Y,iY,cu) = {B{C,Y) -  V{C,Y,N,cu{N)){P/Fy^ 

'AT 

+ E {arociC,  Y,  n)  4- UROC{C, F, n)) {P/F)\  
n=l  

Following the approach of Oakford, Lohmann, and Salazar [1984] a forward dynamic 

programming model can be formulated that will provide a prospectively optimal 

sequence of replacements. The recursive optimality equation is: 

P E C ' { H )  =  w i T i P E C ' { 3 )  +  P E C { C , j , H - i ^ \ , c u ) \  (4.16) 

J = 0,1,2, .../T — 1, C = 1,2,  . . .number of  al ternatives 

The optimal machines to be used can be signified by, 

Y ' ' { H )  = the year of purchase of the last machine in the sequence of prospectively 

optimal replacements, 

and 

(4.15) 
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Table 4.6: First costs, capacity, and demand 

n B(l,n) C(l,n) B(2,n) C(2,n) D(n) 

0 10,000 125 30,000 150 60 
1 30,000 125 35,000 175 70 
2 30,000 125 40,000 200 75 
3 29,000 150 37,000 200 80 
4 29,000 150 35,000 200 90 
5 23,000 150 35,000 200 100 

C ' { H )  = the challenger number of the last challenger in the sequence of prospec

tively optimal replacements. 

A sample problem is now shown to demonstrate this methodology. The first costs, 

capacities, and demand are shown in Table 4.6. For the defender (challenger 1 in 

year 1) the salvage value is: 

V  (1,0, n, c u )  = .55(1,0) ^1 — — j 4- .55(1,0) ^1 — — j 

For the other challengers, the salvage value is: 

The year by year maintenance costs for the defender are: 

a r o c { l , 0 , n )  = 8000 4- 1300n 

UROC{\ ,  0 ,  n ) = 2800 * (c'u(n)^ — cu(n — 1)^) 

The year by year maintenance costs of the challengers are: 

a r o c { C ,  m ,  n )  = 2000 4- 1300n m = 2,3 C = 1 

= 2100 4- 1200TI m = 1,2,3- C = 2 

= 2000 4- lOOOn m = 4,5,6 C = 1 

= 800 4- 700n m = 4,5,6 C  =  2  
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U R O C { C , m , n )  = 2000(cu(rt)'- cu(n — 1)^) m = 2,3 

C  =  1  

= 1700(0^(71)^ — cu(n - 1)^) m = 1,2,3 

C  =  2  

= 1400 (cu(n)^ — cu(n — 1)^) m = 4,5,6 

C = 1 

= 1100 (cu(n)^ — cu(n — 1)') m =4,5,6 

C = 2 

The c u { n )  function is calculated from the machine capacities and the demand. If 

C{j) represents the machine used in year j in some pattern of replacements, then 

the cumulative hours used can be expressed by, 

The interest rate again is 20% and a before tax approach is used. Table 4.7 shows the 

PEC values that were calculated for all lengths of equipment life for all challengers. 

The defender is denoted by C = 1, starting at year 1. Table 4.8 shows the optimal 

sequence of machines using the terminology described earlier. 

From Table 4.8 it can be seen that if the horizon is 3 years, purchase the 

challenger machine at the beginning of year 1. If the horizon is 6 years, then start 

with machine 1 and replace it with challenger 1 in year 4. 

For comparison purposes, consider the changes in the results if there were 

forecast a slower rise in demand. Let the demand for each year in the six year 

horizon be as in Table 4.9. The optimal sequence changes to that shown in Table 

4.10. 
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Table 4.7: P E C { C ,  S T A R T ,  U S E D )  

C  =  1  
Start Used years 
year 1 2 3 4 5 6 

1 10571 21415 32352 43241 54243 65339 
2 15146 23686 31316 38604 45779 
3 12757 20041 26762 33274 
4 9931 15259 19866 
5 8410 12995 
6 5900 

C = 2 
Start End year 
year 1 2 3 4 5 6 

1 17389 26705 34652 41712 48294 54559 
2 16493 24873 31825 37941 43506 
3 15320 22835 29012 34326 
4 11095 16122 20040 
3 8889 12989 
6 7497 

Table 4.8: Optimal sequence of equipment replacements 

H  P E C ' j H )  Y ' j H )  C ' j H )  
1 10570.93 1 
2 21414.93 1 1 
3 32351.51 1 1 
4 41455.98 3 1 
5 47610.98 4 1 
6 52218.00 4 1 
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Table 4.9: Alternate demand forecast 

Year Demand 
1 80 
2 100 
3 110 
4 120 
5 135 
6 150 

Table 4.10: Optimal sequence for faster rise in demand 

H  P E C * { H )  Y ' j H )  C ' { H )  
1 
1 
1 
2 
2 
2 

4.7 More Than One Machine, Non-like-for-like Replacement, and/or 

Varying Service Need 

Now the analysis is extended to the situation where the capacity of one machine 

is insufficient to meet the required demand. Two machines are required to generate 

the needed product. We will assume that no overtime is allowed, that the value 

of a machine at the end of the fixed horizon time is the salvage value. C different 

machines are available each year for purchase to replace one or both of the currently 

used machines. 

The assumption is made that one of the machines will be run at 100% and the 

other machine will produce to meet the remaining demand. Call the machine that 

is producing at 100% machine .4, the other, machine B. The PEC of machine .4 

1 11055.73 1 
2 23552.40 1 
3 37302.77 1 
4 45427.10 2 
5 52806.22 2 
6 58927.23 4 
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PECCCJA JA-F, ) 

L  H o r i z o n  

P E C x C J A ^ J g )  

Figure 4.10; The two dimensional dynamic programming stages 

can be computed independently of B .  It will be the P E C  at 100% utilization for 

whatever lifetime it is used. The PEC of a B machine will depend on which .4 

machine or machines it operates in conjunction with over its lifetime. 

The problem can be solved using a two-dimensional dynamic programing algo

rithm. Each dimension corresponds to one of the two machines. At each stage in 

the "outside" dimension the optimal sequence of replacements is found to supply 

A machine service for a given period of time ending at the planning horizon and 

B machine service for any period of time shorter than or equal to the machine .4 

time period and also ending at the planning horizon. The "inner" dimension steps 

through each of the shorter B machine life periods. See Figure 4.10. 

A backwards directed approach is used rather than the previously used forward 
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F. J/ 

A machine 

B machine 

f  
\ \ )o8ooo 

\ 
F. Ji 

Figure 4.11: A replacement sequence of a demoted machine 

approach for the following reason. The cost of a B machine can only be computed 

if the capacity of the .4 machine used with it, during each year of its life, is known. 

This fact requires that the stages must proceed with the period of B machine service 

always less than or equal to the .4 machine period. When a new item of equipment is 

purchased, one of the two machines being used is disposed of and the other machine, 

if currently serving as the .4 machine, can be demoted to secondary or B machine 

use. This creates a pattern as shown in Figure 4.11. Such a pattern cannot be 

i n c l u d e d  i f  a  f o r w a r d  a p p r o a c h  i s  u s e d ,  s i n c e  t h i s  r e q u i r e s  b o t h  t h e  . 4  a n d  t h e  B  

machine period to start at the same time, but can be included in the backwards 

approach which requires that both periods end at the same time. 

The recursive optimality formulation that follows allows for this demotion from 

primary to secondary service when a machine is replaced. Three cumulative uti

lization functions are defined to model this. 

cu^ = the cumulative use function for a machine that is operated at 100% utiliza-
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CUB ~ the cumulative use function of a machine that supplies the remaining demand 

in years 1 though n. 

CUAB{S ) = the cumulative hours used for a machine that is operated at 100% 

utilization during the first S years of its life and later demoted to less than 

100% utilization. 

The function P E C { C ,  Y ,  N ,  c u )  is defined as in equation 4.16. Let P E C * { F ^ ,  F s )  

be the optimal PEC of a pattern of replacements that provides .4 machine service 

f o r  y e a r s  t h r o u g h  t h e  h o r i z o n  t i m e ,  H ,  a n d  B  m a c h i n e  s e r v i c e  f o r  y e a r s  FB 

through H. PEC* again, is only defined for cases where FB > Fx- The optimal 

machines and their purchase years are described by the following functions: 

Yl{H) = the year of retirement of the first A machine in the sequence of prospec

t i v e l y  o p t i m a l  r e p l a c e m e n t s  s t a r t i n g  i n  y e a r  H  

YB{H ) = the year of retirement of the first B  machine in the sequence of prospec-

.  t i v e l y  o p t i m a l  r e p l a c e m e n t s  s t a r t i n g  i n  y e a r  H  

C \ { H )  = the challenger number of the first .4 machine in the sequence of prospec

tively optimal replacements starting in year H 

C g [ H )  = the challenger number of the first B  machine in the sequence of prospec

t i v e l y  o p t i m a l  r e p l a c e m e n t s  s t a r t i n g  i n  y e a r  H  

The recursive optimality equation is: 

P£C*(F^,Fb) = min(P£C"(7^,Jfl) + P£C^fl(J^,JB,F^,FB)) (4.17) 
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where 

P E C AB{J A,J B,F A,F B) 

=  P E C { C ,  J J I  —  F ^ICUA )  -r P E C { C ,  F BI J B —  F Q ^ CUB )  (4.18) 

i f  C  =  1 , 2 ,  . . n u m b e r  o f  a l t e r n a t i v e s ]  JA = H,H -I, ...FA] JB = H,H -1, ...JA and 

P E C AB { J A ^ J B ^ F A , F B )  =  P E C { C , F A, J B - F A,CUAB{ J A - F A ) )  (4.19) 
! —« 

if C = 1,2, ..number of alternatives] J  A =  Fg; J B — F B - r  1, . . . H  

The following algorithm is used. 

For FA — HORIZON to 1 by -1 

For FB = HORIZON+l to FA by -1 

For JA = HORIZON+l to FA by -1 

For JB = HORIZON+1 to max(J^,fa) 

For Ci == 1 to machines available in year J  A 

F o r  C g  =  1  t o  m a c h i n e s  a v a i l a b l e  i n  y e a r  J B 

compute CUB from demand and .4 machine capacity 

P = PEC'{JA.JB) 4- PEC{CUFA,FA - JA,CUA) 

-\-PEC{C2, Fb, FB — JB^C^B) 

U P  <  P E C ' { F A, F B)  then 

s a v e  P as new PEC {FA, FB) value 

save the machine numbers Ci and Cj 

save the year number of the replacements 

endif 
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If J  A = F B and J B = F B then 

c o m p u t e  C U JX ,B 

P  =  P E C ' { J ^ , J B )  

+ P E C { C I , F A , J B  -  F A , c u a b { J A  —  F A ) )  

U P  < P E C {F A ,F B ) then 

s a v e  P as new PEC *{Fa,Fb) value 

save the machine numbers Ci and Ci 

save the year number of the replacements 

endif 

endif 

end all loops 

Figure 4.12 below shows pictorially the replacement patterns that would be 

computed to find the minimum cost path given that the planning horizon is 6 

years, Fx is 2, and FB is 4. The eleven patterns on the left are those patterns 

where there is no demoting of the machines that are not already in a previously 

found optimal pattern. The three patterns on the right are the possible demotion 

patterns for this example. 

Given the same data as in the last example, except that the demand is changed 

to that given in Table 4.11, the algorithm generates the results shown in Table 4.12. 

In this table are shown the optimal cost and the year and challenger.number of 

the most recent replacement for any given start year of machine .4 (across the top) 

and start year of machine B (down the table). Also, above the optimal cost is a 

graphical representation of the service years provided with .4 machine service above 
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B  machine service. Thus the optimal cost to provide service for the entire time 

horizon is $119,815. This cost occurs if the following sequence of replacements are 

made. 

Purchase two challenger Is in the first year. In year three retire the one that 

has been used to provide B machine service and demote the one that has provided .4 

service to B service. Purchase challenger 1. In year four, again purchase challenger 

1 and retire the B machine, demote the .4 machine. In year 6, do the same one 

more time. 
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mm 

Figure 4.12: Replacement patterns for a 6 year planning horizon when = 2 and 
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Table 4.11: Revised demand forecast 

Year Demand 
1 200 
2 230 
3 260 
4 300 
5 300 
6 300 
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Table 4.12: Results of the two dimensional dynamic programming example 

7 6 5 4 3 2 1 1 
* ** **** 

7 0 6437 14753 23616 37872 51733 64317 j 

o
 

o
 

7/ 1 7/ 1 7/ 1 •4/ 1 4/ 1 2 / 1  1  
0/ 0 7/ 0 7/ 0 7 / 0  7 / 0  7/ 0 7/ 0 1 

* *** 1 
* * * * • * 1 

6 12466 20572 29256 43511 57373 69956 i 
6/ 1 6/ 1 6/ 1 4/ 1 4/ 1 2/ 1 i 

-7/ .1 -7/ 1 -7/ 1 6/ 0 6 / 0  6/ 0 i 
** *** 1 
**  * *  - * V ' 

' 

5 28269 36732 50987 64849 77432 i 
5/ 1 5/ 1 4/ 1 4/ 1 2/ 1 1 

-7/ 1 - 7 / 1  5/ 0 5/ 0 5/ 0 j 
***  ****  :#*%*** j 
*** *** *** i 

4 44757 58744 72874 85457 
7 / 2  4 / 1  4/ 1 2/ 1 ! 
7 / 2  -6/ 1 4/ 0 4 / 0  1 

1 * * * *  ****!« 

%*** ; 

3 71263 85057 97640 1 
1 3/ 1 3/ 1 2/ 1 : 
1 -6/ 1 -4/ 1 3/ 0 i 
1 
! 

***% * ; 

2 97527 109840 : 
j 2/ 1 2/ 1 ; 
i -4/ 1 -3/ 1 ; 
1 
1 
1 V** ! 

1 119815 ; 

i 1/ 1 i 
! -3/ 1 i 
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5 INTEGRATION MODELING 

The model presented in this chapter is a simplified model of costs, revenues, 

and product quality in a manufacturing system. The objective is to show qualita

tively what such an approach indicates about replacement decisions and replacement 

decision analysis. Three aspects of the model are of particular importance. 

1. as in Chapter 4 the degradation of equipment is a function of both age and 

use. 

2. the characteristics of each component of the system have an effect on the 

operation of the other components. 

3. the product demand is a function of the manufacturing system's characteris

tics. 

There are many interactions of equipment items in a system. For simplicity, the sole 

interaction modeled here is that caused by defects created during the manufacturing 

process. This affects the work load of other equipment and thus the costs. It also 

has an effect on the product's reputation in the market place, which impacts the 

product demand. 
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5.1 The Illustrative Model 

The replacement decision criterion is present equivalent worth of net cash flows 

within a fixed time horizon. End of year cash flows and discrete compounding are 

used. The model is developed from a before-tax perspective. 

A set of formulas describes the computation of the present equivalent of the 

system aggregate worth {PESAW) for a fixed time horizon. Replacement decisions 

that lead to a positive value of PES AW are considered acceptable. Those decision 

s e t s  y i e l d i n g  P E S  A W  <  0  a r e  u n a c c e p t a b l e .  T h e  s y s t e m  i s  a  c o l l e c t i o n  o f  M  

processors, where "processor" is a generic term denoting an entity which performs 

an operation in the manufacturing process. To make the model as broad as possible, 

an operation is defined to be any action taken in the manufacturing of the product, 

whether a value-added operation br not. Thus "operation" includes the order given 

by the manager to commence production of a lot of parts, the material handling 

necessary to move parts from one machine to another, as well as drilling, casting, 

or assembly tasks. Correspondingly, a "processor" can be a machine, a conveyor 

belt, a manager, or a section of factory floor where work in process is stored. The 

system produces various products which are made up of component parts described 

by a parts explosion and process routings. 

5.1.1 Notation 

P E S  A W  = present equivalent of system aggregate worth 

H = the planning horizon in years 

P  =  number of different products the company produces 
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R { p )  = the number of component parts in product p  

M = the number of processors in the system 

P A R { n , p )  = product annual revenues in year n for product p  

A R M { n , p , r )  = annual raw material cost in year n for part r of product p  

P E M R C { m )  = present equivalent of processor related costs for processor m  

Q { n ^ p , r , o )  = starting quantity in year n for operation o of part r of product p  

U P { n , p )  = unit selling price in year n  or product p 

U M C { n , p , r )  = unit raw material cost in year n of part r  of product p  

V ( m , n , u )  = resale or salvage value of processor m with age n  and cumulative use 

of u hours 

/(m) = installation cost of processor m beyond price of equipment 

D V { m , n , u )  = disposal value of processor m  with age n  and cumulative use of u  

h o u r s .  P V { m ,  n , u )  i f  h o r i z o n  e n d s  b e f o r e  m a c h i n e  i s  r e t i r e d ,  e l s e  =  V ' ( m ,  n , u )  

PV'(m, n,u) = the potential value of processor m  with age m and cumulative use 

of u hours. This is the value in terms of what benefits the equipment can 

provide minus its costs. 

I = the life of the processor in years 

c u { m , n )  = the cumulative time used on processor m  at the end of year n 

a r o c { m , n )  =  a g e  r e l a t e d  o p e r a t i o n  c o s t s  o f  p r o c e s s o r  m  i n  y e a r  n  
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u r o c { m , c u )  = use related operation cost rate of processor m  after c u  cumulative 

hours of use 

U R O C { m , n )  =  cumulative use related operating cost of processor m in year n  

, 0 (p, r )  =  number of operations needed to make part r of product p  

O T { p , r , o )  = operation time for operation o  on part r  of product p  

c o m p { r )  = the part into which part r is assembled 

M F { m ,  n , p ,  r , o )  =1 if operation o of part r  of product p is performed by processor 

m in year n, 0 otherwise 

Q R M { p , r )  = quality of raw material (percentage of bad material) used for part r  

o f  p r o d u c t  p  

G B { m , n )  =  fraction of parts that start good and become bad on processor m in 

y e a r  n  

B G { m , n )  = fraction of parts that start bad and become good on processor m in 

y e a r  n  

B D { m , n )  =  fraction of parts that are discarded on processor m in year n  

g { n , p ,  r , o )  = the percentage of good part r  of product p  remaining after operation 

o in year n 

b { n , p , r , o )  =  the percentage of bad part r of product p  remaining after operation 

o  i n  y e a r  n  
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d ( n , p , r , o )  = percentage of parts that have been discarded up through operation o  

on part r of product p in year n 

B P { n , p )  =  the percentage of product p  that leaves the factory in a flawed condition 

i n  y e a r  n  

D { p , n )  = •  the demand for product p  in year n  

M S { p i n )  = the firm's market share for product p  in year n  

P P { p , r )  —  the quantity of part r  in one unit of product p  

F m s { B P )  =  the function that relates the product quality history, B P ,  to the firm's 

market share 

5.1.2 Computation of P E S A W  

The present equivalent system aggregate worth is equal to the discounted sum 

of the revenues minus material costs minus the processor related costs. This is 

expressed in equation 5.1. 

H / P / fl(p) \ \ . M 

P E S A W  =  Y .  ̂  P.4i2(n,p)- ^  { A R M { n , p , r ) ] ]  { P / P E M R C { m )  
N = l  \p=l \ r=l ) / m=l 

(5.1) 

^ ; ^ 

5.1.3 Revenues and raw material costs 

Revenues and raw materials are based on quantity sold and quantity started in 

production, respectively. These two quantities differ by the amount of material that 

is scrapped due to defects. For simplicity, it is assumed that the quantity produced 
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equals the quantity sold equals the quantity demanded. The final assembly of any 

product is numbered as part number 1. The product annual revenue in year n is 

given by, 

P A R { n , p )  =  Q { n , p ,  1,0 { p ,  1) -h 1) x (7P { n , p )  (5.2) 

Using 0 { p ,  1)4-1 as the operation number means the starting quantity of the 

operation after the last one. In other words, this is the ending quantity of the last 

operation. 

The annual raw material cost is that of the quantity of parts started in pro

duction, Thus, 

A R M { n , p , r )  =  Q { n , p , r , l )  x U M C { n , p , r )  (5.3) 

5.1.4 Processor related costs 

The value of a processor is modeled as a function of age and cumulative use. F 

represents the resale value of the equipment in contrast to PV which is the value in 

terms of what benefits the processor can provide to the firm. This is the distillate of 

the expected revenue generated minus the costs incurred in the use of the machine 

during its remaining life. The symbol DV represents the disposal value, and is 

either V* if the machine is sold before the end of the horizon or PV{m,a,u) if the 

machine is to be kept longer than the planning horizon. 

The operating costs are also modeled as a function of age and usage. As in 

Chapter 4, aroc{m,n) represents the age related cost in year n to operate processor 

m. The use related operating costs, uroc{m,u), is the cost per unit time of use 

as dependent on the cumulative time for which the machine has provided service 

to date. The unit time used in Chapter 4 was one year. In this chapter the time 
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unit used is one hour. This is more appropriate for cumulating processing time on 

various machines. Although uroc is modeled as a continuous function, the cash flows 

involved are treated as end of year amounts, since the timing of the machine usage 

during each year is not determined by the model. Thus the cumulative function, 

UROC, is as described in Chapter 4. 

Assume that the processor is acquired in year / and retained for I years. The 

present equivalent of the processor related costs is given by equation 5.4. 

P E M R C { m )  = ^V'(m,0,0) — /(m) - D V { m J , c u { m ,  1 ) ) { P / F ) ]  

I  /  cu{m,n) \  \  

^ aroc{m,n)  +  J  uroc{m,n)du\  { P / F ) ' ^  
\ cu(m,n-l) / / 

(f/F)} (3.4) 

The cumulative utilization in hours cu,  is computed by totaling the hours required 

of each processor to perform the operations to produce the demanded quantity of 

end products. 

n P  R { p )  0(p,r) 

C'u(m,n) = YiSZ Q U^P^^^O)  X O T { p , r , o )  X M F { m , j , p , r , o )  (5.5) 
j=l p=l r=l 0= 1  

This is the total time needed for any processor to perform all the operations for all 

parts it processes in year 1 through year n. The cu(m,n) values are best calculated 

as a group for each year. The following algorithm is used. 
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Set all elements of c u  to 0 

For J = 1 to n 

c'u(m, n) = cu(m,n — 1) 

For p = 1 to P 

F o r  r  =  1  t o  R { p )  

For o = 1 to 0 { p ,  r )  

m  = processor that performs operation o  

cu{m,n) - cu{m,n) 4- Q{j,p,r,o) x OT{p, r,so) 

end all loops 

5.1.5 Quality characteristics 

The quality characteristics are modeled using expected values. G B { m , n )  is 

the probability of an operation on processor m producing a defect in a good part in 

year n. BG{m,n) is the probability of noting a defect in a part and correcting it. 

BD{m,n) is the probability of detecting a bad part and scrapping it. The average 

percentage of good, bad, and discarded component parts are given by equations 5.6, 

5.7, and 5.8 respectively. 

g { n , p , r , o )  =  g { n , p , r , o -  1) x (1 - GB(m,n)) -r b { n , p , r , o -  1) x B G { m , n )  (5.6) 

b { n , p ,  r ,  o )  =  b ( n ,  p ,  r ,  o - l )  x { l - B G { m ,  n ) - B D { m ,  n ) ) - g { n ,  p , r , o - l ) x  G B { m ,  n )  

(5.7) 
O —  1  

d { n , p , r , o )  =  Y l b { n , p , r , k )  X  B D { m , n )  ( 5 . 8 )  '  

For the special case when o=0, the quality of product depends on the quality 

of the raw material or the quality of the component parts. These relationships are 
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shown in equations 5.9 through 5.12. 

b { n , p , r , 0 )  =  Q R M { p , r )  r  = :  p u r c h a s e d  p a r t  (5.9) 

5(n,p,r,0) = 1 - Q R M { p ^ r )  r  =  p u r c h a s e d  p a r t  (5.10) 

g { n , p , r , 0 )  =  J I  g { n , p , k , 0 { p , k )  - h i )  r  =  m a k e  p a r t  (5.11) 
component parts of f  

6(n,p, r, 0) = 1 - ̂ (n,p,r, 0) r = make part (5.12) 

The Anal percentage of bad product, B P { n , p )  is 

B P i n  o )  —  K ^ i P i  1 '  0 { P i  1 )  1 )  / .  , n \  
^ ^(n,p, 1,0(p, 1.) + 1)4.6(n,p, 1,0(p, 1) + 1)' 

5.1.6 Quantity relationships 

To find quantities it will be assumed that the production level just meets the 

demand. To calculate the quantities for each operation in the production process, 

first the ending quantities are found and then the quantities at each operation 

throughout the production process are computed based on the ending quantity and 

the quality characteristics of the processors. The ending quantity is either the 

demand, when the part is the final assembly, or the starting quantity for the higher 

level subassembly part in the parts explosion multiplied times the quantity of the 

lower level part required in the subassembly. This is shown in equations 5.14 and 

5.15 below. 

Q(n,p,r, 0(p,r) 4-1) = i;)(p,n) X MS(p, n) f o r r  =  l  (5.14) 

Q{n,p,r,0{p,r)-r 1) = Q{n,p,comp{r),l) X PP{p,r) /or r ^ 1 (5.15) 
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The starting quantity of any given part, Q { n , p , r ,  1), can be calculated when 

the ending quantity is known using equation 5.16. 

Finally, quantities at the beginning of any operation o  can be computed from the 

relationship 

Q(n,p,r,o) = Q(n,p,r,l) x (1 - r,o)). (5.17) 

5.1.7 Market share function 

Let the market share , of a product be a function of the quality of product 

produced in previous years as in equation 5.18. 

M S { n , p )  =  F m s  { B P { n  -  l , p ) ,  B P { n  -  2 , p ) , B P { n  -  3 , p ) , ...) (5.18) 

5.2 Comparing Two Alternatives 

Given a scenario of processors, products to produce, and market demand, 

PESAW can be calculated. This example will compare two scenarios. First 

PESAW will be computed given that the currently owned processors will be re

t a i n e d  f o r  t h e  e n t i r e  5  y e a r  p l a n n i n g  h o r i z o n .  C o m p a r e d  t o  t h i s  w i l l  b e  t h e  P E S A W  

if one of the processors is replaced at the beginning of year 1. 

5.2.1 Processor data 

A processor and its possible replacement are described in Table 5.1. The data 

of the other processors in the system is given in Appendix B. The currently owned 
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final product 

Part 

Part 
2 required 

Figure 5.1: Parts explosion diagram of firm's sole product 

machine has no installation cost since it is already in place. Note that the age, n ,  

is in years, while u, the cumulative use, is in hours. 

The operations are numbered with a five digit code that is used in the process 

routings. The operation times are given in hours per operation. Operations are 

performed either once per part or once per lot. 

5.2.2 Product data 

Figure 5.1 shows the parts explosion diagram for the firm's sole product. Part 

1 is the finished product. There is one of each part in the upper level assemblies, 

except for part 5, of which two are needed to make part 3. 
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Table 5.1: The defender and challenger characteristics 

D e f e n d e r  C hallenger 
I  0 8000 
V  
P V  

22000 . 48000 22000 , 48000 V  
P V  

n+6 ' .0005U4-6 

6800 4- V* 
n-i-1 .OOOSu+l 

6800 + V  
aroc 27000 + SOOOn 22000 ^ 250071 

U R O C  8(ii + 10000)+ 8 " - ( f t ) ' "  
G B  .045 + .000003.5% .04 t- .0000003.5U 
B G  .15 .15 
B D  .25 .25 
Operation times 
02 - 001 25.00 23.00 
02 - 003 .0027 .0021 
02 - 004 .0030 .0025 
02 - 005 .0028 .0019 
02 - 021 25.00 23.00 
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Table 5.2: Demand for final product in entire market 

Year 
1 
2 
3 
4 

Expected Demand 
300,000 
300,000 
315,000 
321,000 
330,000 

Expected Lots 
12 
12 
12 
13 
13 5 

5.2.3 Market demand 

The expected market demand is shown in Table 5.2. The firm currently main

tains about a one-third market share. Based on this, the expected number of lots 

to produce each year is included in the table. 

5.2.4 Process routings 

In Table 5.3 are given the process routings for the five component parts of the 

firm's one product. The operation numbers are used to determine which processor 

can provide the function. The quantities are multiplied by the operation times in 

the processor data. Since some operations, such as setup, are done only once per 

lot, the routings include a column stating whether the operation occurs once per 

part or once per lot. 

5.2.5 Raw material cost and quality 

The data describing the incoming raw material and the expected quality are 

given in Table 5.4.' 
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Table 5.3: Operations and quantities in the production of the product 

Part Op # Operation Quantity Per lot/part 
1 1 01-001 1 lot 

2 04-001 .0033 part 
3 02-005 .625 part 
4 03-001 1 lot 
5 01-001 1 lot 
6 02-021 1 lot 
7 10-001 5 part 

2 Î Ô2#î i Et 
2 01-001 1 lot 
3 02-004 .733 part 

3 1 01-001 1 lot 
2 09-015 4 part 
3 03-031 15 lot 
4 03-001 3 lot 
5 02-004 1.11 part 

4 1 02-001 1 lot 
2 01-001 1 • lot 
3 02-004 .5 part 
4 01-001 1 lot 
5 05-007 5 part 
6 03-001 2 lot 
7 01-002 1 lot 
8 02-004 .325 part 
9 01-001 1 lot 

10 06-001 5 part 
11 03-001 4 lot 
12 01-001 1 lot 
13 02-003 .25 part 

5 1 02-001 1 lot 
2 01-001 1 lot 
3 02-004 ^11 part 



www.manaraa.com

71 

Table 5.4: Raw material cost and quality data 

Part Raw material quality of raw 
number cost per part material (%bad) 

2 $1.05 0.5% 
4 $ .35 5.0% 
5 $ .19 1.0% 

5.2.6 Other data 

The function F m s  that relates market share to the quality of product produced 

in previous years is given by, 

F m 3 { p , n )  = (((.8 x B P { n  —  l , p )  -f .6 x B P { n  -  2 , p )  -f .3 x B P { n  -  3,p)-^ 

.1 X BPi^n — 4, p ) )  —  .10) + 1) * .3 

The bad product fraction, (BP), for the last four years has been .05, .052, .054, .06. 

The product sells for $6.00. The before tax rate of return is 20%. 

5.2.7 Results 

P E S A W  is calculated for the case where the current machine is retained. 

Tables 5.5 and 5.6 show intermediate results. PESAW without replacement is 

$-517.86, with replacement is $735.63. This indicates that replacement is favored 

from an economic standpoint. It is interesting to note that this result is in spite 

of the fact that the PEMRC of the new machine is greater than that of the old 

machine by almost 15%. The benefits do not stem from the cost of the equipment 

itself, but from the system effects. 
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Table 5.5: Sales, quality, material costs, and revenues 

Company Material 
Yr Sales %Ba'd Costs Revenues 

Def. Ch. Def. Ch. Def. Ch. Def. Ch. 
1 89,640 89,640 .060 .056 193,445 190,883 537,840 537,840 
2 87,989 89,073 .066 .061 193,812 193,071 527,933 534,440 
3 89.871 92,102 .072 .066 202,058 203,228 539,228 552,613 
4 88,275 91,402 .077 .071 202,655 205,392 529,650 548,413 
5 86,892 90,766 .083 .076 203,693 207,754 521,353 544,656 

Table 5.6: PEMRC of processors with and without replacement 

PEMRC with 
.Processor Defender Challenger 

1 118,647 118,647 
2 59,347 59,339 
3 107,543 107,614 
4 138,126 137,957 
5 96,016 96,033 
6 136,594 136,594 
7 99,585 100,237 

Def/Cha 163,205 187,917 
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Table 5.7: Potential PES AW with ideal quality characteristics 

Processor 
changed PES AW 

none - 517 
1 174,434 
2 33,642 
3 31,276 
4 4,600 
5 7,704 
6 92,510 
7 214,846 
8 296,533 

5.3 Determination of Likely Replacement Candidates 

The use of a systems model in replacement analysis can also be helpful to 

evaluate the current set of processors to determine which items of equipment are 

most likely candidates for replacement. As an example, using the data as given 

above, PES AW can be recalculated as each machine's quality characteristics are 

set to an ideal of GB = 0, BG = 1.0, BD = 0. (Other system models may suggest 

other criteria of evaluation.) The results of are shown in Table 5.7. The results 

indicate that the most potential benefit is to be gained from the replacement of 

processors 1,7, and 8. 

5.4 Interactions of Replacement Alternatives 

Given the data as already described, suppose that there is a competitor machine 

available to replace processor 7 with the characteristics given below in Table 5.8. 

There are now two possible replacements to be made. Table 5.9 shows the PES AW 
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Table 5.8: Characteristics of a challenger of processor 7 

Function Challenger 
I 
V 
PV 
aroc 
UROC 
GB 
BG 
BD 
Operation 

1 0 - 0 0 1  

12,000 
75000 90000 
n+l .000SU4-1 

9500 -r V 
28000 - 3000n 
20u + (u/4)^ 
.0 
.40 
.55 

time 
.0005 

Table 5.9: PES AW with various combinations of replacement 

! Replace 8 Don't Replace 8 | 

Replace -517 
1 

735 1 

7 i 

Don't replace 722 
i 

-2089 ! 
7 : 

values for the four combinations of replacement possible. Interestingly, while either 

replacement considered individually is profitable {PESAW > 0), if both are made 

the result is unacceptable. This shows that when using an integration view, the 

merit of replacing one item is dependent on the replacement of other items. 
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5.5 Computational Burden of Combinations of Replacement Decisions 

As was shown in the third example, the decision for replacement of one item 

is not necessarily independent of decisions for replacement of others. This is true if 

the possible replacements occur in the same year or in different years. It is often not 

possible to determine the dependent / independent status of a replacement decision 

without analysis. The system modeling approach exemplified above provides a way 

to do such an analysis. However, when the assumption is made that all decisions 

cannot be treated as independent of all other decisions, the examination of a large 

number of replacement combinations is necessitated. For example, suppose in a 

manufacturing system there are M machines that could be replaced. Using a plan

ning horizon of jV years, let the number of possible alternatives for each machine 

m in year n (including keep the current machine) be denoted, k{m,n). The total 

number of sets of decisions possible for the N year planning period is 

For a simple case with 10 machines, and a 5 year planning horizon, if k{m, n) = 2, 

for all m and n, there are 1.125 trillion possible decision sets. It would be impractical 

to compute the measure of merit for all these sets. 

In Chapter 4, the technique utilized to reduce computation in replacement 

analysis was dynamic programming. Unfortunately, the dynamic programming ap

proach is not applicable to the system model as it is formulated here. Consider 

the sample model cast as a sequential decision problem with decisions made at the 

beginning of each year to or not to replace each machine. The problem becomes one 

of moving from the beginning of year one to the end of the planning horizon with 

(5.19) 
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maximum PES AW. Since the costs of use of each processor depend on the age and 

on the cumulative utilization of the processor, the states in the decision network 

are constituted by a set of processors with given ages and cumulative utilizations 

along with a collection of bad product percentages for the previous years. All of 

these values will effect the value of any path to the next year. With the state so 

described, it is highly, unlikely that two sets of decisions will ever lead to the same 

state. The problem becomes one of finding in a tree network the shortest path from 

the root to a leaf node. But for this problem dynamic programming is of no help. 

An approach to reducing the number of paths to examine in the tree is through 

heuristics. It may be possible to find a probable optimum solution by looking at only 

a fraction of the possible paths. Preliminary studies by the author using the well 

known heuristic search algorithm described in Nilsson [1980), show some promise in 

this approach. With states in the decision tree defined as in the above paragraph, 

it is impossible to find the costs to take you to any state unless that state occurs 

in the last year of the planning horizon or if all machines are retired in that year. 

Otherwise the cost is dependent on how long the machines are retained, since the 

first cost is recovered over the duration of the equipment life. However, if one can 

sum up all operating costs and other known costs incurred up to the time of the 

state being examined and then makes a heuristic estimate of remaining costs an 

estimate can be made of the minimal cost path through any node in the decision 

tree. The past costs become Nilsson's g value and the heuristic estimate of minimum 

remaining costs becomes the h value. 

Using this formulation and extending the data in Chapter 5 to include possi

ble replacement machines for processors 7 and 8 in each of years 1 through 4, an 
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optimal sequence of replacements was found by examining only 30 of the possible 

256 sequences. Results of this analysis are found in Appendix C. 
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6 SUMMARY 

The objective of this research was to extend current economic replacement 

models to make them more applicable to evaluating replacements where techno

logical change and resulting indirect cost impacts are considered. An integrated 

approach was used that expanded the modeling boundaries to include the effects 

of changing demand and machine utilization and also to include the interactions of 

the various machines and other entities that make up a manufacturing system. 

0.1 Use-based Operating Costs 

First, the concept of utilization based operating costs and operating cost gradi

ents was added to the traditional replacement model. Methodologies to find optimal 

replacements for various sets of assumptions were shown. 

In the like-for-like replacement case, it was noted that the annual equivalent 

cost was not very sensitive to the utilization level, or even to the exact replacement 

timing. However, the cost per part produced was quite sensitive to the utilization, 

showing the effect of economies of scale. 

If two machines are necessary to provide a single function, the costs can be 

minimized by running one machine at maximum capacity and the other machine 

at a level to meet the remaining demand. However, the savings may not be a large 
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percentage since the costs are not highly sensitive to the mix of machines providing 

the service. 

When the most general assumptions were considered, dynamic programming 

was used to reduce the burden of finding the optimal replacement sequence. For mul

tiple machines providing the same function, a multi-dimensional dynamic program

ming algorithm could be used, given certain assumptions. Here, a two-dimensioned 

algorithm was presented. 

6.2 System Interactions 

After describing the addition of utilization concepts to replacement analysis, a 

system model was presented to exemplify a modeling approach that included the 

effects of the interactions of system components. The major interaction accounted 

for in the sample model was that of part quality. Flaws created in the manufacturing 

process increased the load on the processors through rework. The amount of rework 

affected the utilization of the processors. Also the model incorporated the effect of 

bad product leaving the factory through a feedback effect on demand. 

The system model, although only modeling one interaction, was very data 

intensive. It was useful for a comparison of alternative courses of action. However, 

to find an optimal course of replacements when all the processors in the system are 

considered requires the comparison of an exponentially large number of alternatives. 

Dynamic programming does not apply to this optimization process. A heuristic 

search procedure offers some promise. The system model also could be used as a 

tool to suggest likely candidates for replacement. 
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7 RECOMMENDATIONS FOR FURTHER STUDY 

More research needs to be done to make these models practical for industrial 

decision makers. First, the important system interactions must be determined. In 

spite of what has been said in this article, there is a degree to which the machines 

in a manufacturing system act quite independently. It is therefore necessary to 

determine the ways in which one processor effects the costs and benefits of another 

significantly. Sensitivity analysis can be applied to various model formulations. 

Quality was an important factor in the model described here. Scheduling, material 

handling, and capacity can also be considered. It should be noted that the model 

developed by Leung and Tanchoco [1987'; addresses these factors. 

The "simplified" model described in Chapter 5 is data intensive. A complete 

systems economic model would use incredible amounts of data. For the model 

presented here, operation times and parts explosion data already exists in most 

manufacturing firms, often in computer readable form. Most larger firms have 

divisions to perform market research and estimate product demand. This same 

division might also estimate how demand changes as a function of quality. The 

data most challenging to obtain are the quality characteristics of machines and the 

degradation functions. Research will have to be done in procedures for determining 

such estimates. 
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Because of advancements in data collection devices the trend is to have more 

and more manufacturing information available to management. Already authors 

such as Knoop[1987] and Carrasco and Blank[1987] are basing economic analysis 

models on the availability of online manufacturing data. Still the issue of extrapo

lating historical data into the future remains. 

Finally the heuristic approach to reducing evaluations of decision options needs 

more exploration. The heuristic, of course, depends on the model used. Perhaps 

some generalized approach to developing an heuristic can be developed. Testing to 

see how well such heuristics perform would also be necessary. 
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10 APPENDIX A: SENSITIVITY ANALYSIS OF ECONOMIC LIFE 

In the sensitivity analysis that examined the changes in economic life and 

present equivalent cost as the salvage value, use-related operating cost, and age-

related operating cost changed, the following functions were used. 

For salvage value: 

1 F(.V,cu(iV)) = 100 I :V = 0 

= 10 ! iv > 0 

2 V(jV,c'u(iV)) = lOOe-^'^^ 

3 V*(iV,cu(iV)) = lOOe-"®'^^ 
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For aroc: 

1 aroc{N) = iV 

2 aroc{N) = ION linear 

3 aroc{N) = 25N 

4 aroc{N) = 

5 aroc{N) = convex 

6 aroc{N) = 

7 aroc{N) = 100(1 — 

8 aroc{N) = 50(1 — 

9 aroc{N) = 10(1 -

For (TAOC: 

1 U R O C { N )  =  jVD' 

2 U R O C { N )  =  l O i V C '  

3 U R O C { N )  =  2 5 N U  

4 U R O C { N )  =  

5 UROC{N) = e'^=^^ 

6 U R O C { N )  =  

7 U R O C { N )  =  100(1 -

8 (7A0C(jV) = 30(l-ei«'V[/) concave 

9 f7A0C(:V) = 10(1 - e 

concave 

linear 

convex 
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The utilization, U, took on values of 100%, 75%, and 50%. 

On the next three pages are samples of the outputs generated for the various 

combinations of the functions. 
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Figure 10.1: Sensitivity analysis: sample 1 
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Figure 10.2: Sensitivity analysis: sample 2 
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10.3: ie 3 
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APPENDIX B: DATA OF CURRENT PROCESSORS 

1 I = 0.0 operations and times 

V { n , u )  = 0.0 01-001 1.0 

P V { n , u )  = lOOOn 4- .75% 01 - 002 1.5 

aroc{n) = 40000 2000ti 01 - 003 2.3 

U R O C [ u )  = .50u 

GB . = .01 

BG = .35 

BD =• .25 

2 / = 0.0 operation and time 

F(n,u) = 0.0 0
 

1 o
 

o
 

C
O

 

P V { n , u )  = 300n -- .9u 

aroc{n) = 21000 - 300n 

U R O C { u )  = 2u 

GB = .01 

BG = .45 

BD = .25 
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3 I = 0.0 operation and time 

V { n , u )  

P V { n , u )  

500 , 15000 
(l + fo) (j^+1) 

2500 -t- V'(n,u) 

09 -015 .004 

aroc{n) = 29000 + 1700m 

U R O C { u )  = 

GB = .05 + .000001% 

BG = .15 

BD = .45 

4 I = 0.0 operation and time 

V(n,u) 

PV(n,u) 

7000 , 1250 

3000 + V'(n,%) 

05 - 007 .002 

aroc(n) = 25000 + 1700n 

U R O C { u )  = 15%+ 

GB = .0175 4- .00000003% 

BG = .15 

BD " • = .10 

5 I = 0.0 operation and time 

V { n , u )  

P V { n , u )  

= 21000 , 9000 
' 3550"'® 

3000 ^ V'(n,%) 

06 - 001 .0025 

aroc(n) = 15000 - 800n 

U R O C [ n )  = 12(1%)'' 

GB = .025 + .00000007% 

BG = .10 

BD = .25 
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6 / = 0.0 operations and times 

V { n , u )  — 121000 03 - 001 40.0 

P V { n , u )  = 12000+ K(n,u) 03 - 002 1.0 

aroc{n) = 50000 +1600m 03 - 031 .0167 

U R O C { u )  = 0 

GB = .01 

BG = .00 

BD = .00 

7 I = 0.0 

V { n , u )  = 2000 « (20 - n) -f 
V •  3000)  

P V { n , u )  = 1500 -V'(n,u) 

aroc{n) = 23000 + 500n 

U R O C { u )  = ^ (390)^ operation and time 

GB = .02 10 - 001 .0025 

BG = .10 

BD = .30 
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12 APPENDIX C: HEURISTIC SEARCH TO FIND OPTIMUM 

REPLACEMENT SEQUENCE 

With a tree constructed as described in Chapter 5, the g value is computed by 

finding PES AW of the sequence of replacements leading to the given node. The h 

heuristic estimate used in the analysis was chosen to be an upper bound value. It 

was computed by ignoring capital costs, assuming that no defective parts would be 

produced, and calculating the processor operating costs for each operation using the 

lowest cost processor available in that year (including ones that would be purchased 

in a previous year). 

There was one slight possibility that the f value would not be an upper bound. 

The g value used contained a salvage value received at the end of the time period. 

This value may not actually be received in some of the paths further down in the 

tree. So the estimate is not entirely an upper bound estimate, but almost. 

Figure 12.1 is a partial search tree where the optimal value was found after 

examining only 30 scenarios of a possible 256. One machine has two challengers 

each year for the entire planning horizon of 5 years, and another machine has two 

challengers each year for the first three years only. 
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44,590 

,12,517 

/69,115 

48,344 

53,042 

56,052 

60,675 

60,288 

102,901 < 

^76,401 

^64,576 

54,283 

53,793 52,746 
52,921 

61,986 63,458 
62,317 

61,400 50,393 

43,894 

42,852 

44,378 

40,022 

32,481 

V0,787 

52,031 

45,276 

59,745 

47,542 

Figure 12.1; A searcli tree to find optimal replacements for 5 year planning horizon 
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